Functional principle and the main components of lithium and Li-ion batteries (primary-, secondary)

Dr. Robert Kun

Budapest University of Technology and Economics Faculty of Chemical Technology and Biotechnology Department of Chemical and Environmental Process Engineering

Short history of the galvanic cells

Short history of the galvanic cells

Year	Inventor	Activity
1600	William Gilbert (UK)	Establishment of electrochemistry study
1745	Ewald George von Kleist (Netherlands)	Invention of Leyden jar. Stores static electricity
1791	Luigi Galvani (Italy)	Discovery of "animal electricity"
1800 1802 1820 1833 1836 1839 1859 1868 1899	Alessandro Volta (Italy) William Cruickshank (UK) André-Marie Ampère (France) Michael Faraday (UK) John F. Daniell (UK) William Robert Grove (UK) Gaston Planté (France) Georges Leclanché (France) Waldmar Jungner (Sweden)	Invention of the voltaic cell (zinc, copper disks) First electric battery capable of mass production Electricity through magnetism Announcement of Faraday's law Invention of the Daniell cell Invention of the fuel cell (H_2/O_2) Invention of the lead acid battery Invention of the Leclanché cell (carbon-zinc) Invention of the nickel-cadmium battery
1901 1932 1947 1949 1970s 1990 1991 1994 1996 1996	Thomas A. Edison (USA) Schlecht & Ackermann (D) Georg Neumann (Germany) Lew Urry, Eveready Battery group effort group effort Sony (Japan) Bellcore (USA) Moli Energy (Canada) University of Texas (USA)	Invention of the nickel-iron battery Invention of the sintered pole plate Successfully sealing the nickel-cadmium battery Invention of the alkaline-manganese battery Development of valve-regulated lead acid battery Commercialization of nickel-metal-hydride battery Commercialization of lithium-ion battery Commercialization of lithium-ion polymer Introduction of Li-ion with manganese cathode Identification of Li-phosphate (LiFePO ₄)
2002	University of Montreal, Quebec Hydro, MIT, others	Improvement of Li-phosphate, nanotechnology, commercialization

1970's: commercialisation of the first <u>non-rechargeable</u> lithium battery

1980's: development starts on rechargeable Li-ion cells (with metallic Li)

1991: commercialisation of <u>rechargeable</u> Li-ion cells (Sony)

1994: commercialisation of <u>rechargeable</u> Li-ion polymer cells, "LiPo" (Bellcore)

1996: Introduction of the lithium-manganese-oxide (LMO) cathode (Moli Energy)

1996: Introduction of the lithium-iron-phosphate (LFP) cathode material (Univ. Texas)

Advantages of the Li-ion technology

- maintenance-free
- no "memory effect"
- no self-discharge
- >3,6V cell voltage \rightarrow highest energy density
- available as "energy cell" and "power cell"
- fast charge/discharge is possible
- high efficiency (i.e., Coulombic efficiency)
- broad temperature range (-20°C +60°C)
- flat voltage profile

Disadvantages of the Li-ion technology

- active charge- and discharge safety procedures, "cell balancing" needed
- Manufacturing complex, highly cost-intensive, expensive/high price
- possible cell opening on cell abuse (mechanic-, electric-, thermal abuse)
- strict transportation provisions

Why lithium?

Alkali metal Atomic number: 3 Atomic weight: 6,94 Spec. gravity: 0,53 g/cm³

> Name origin: Ancient Greek λίθος (*líthos*) = "Stein"

	1																	VIII
	1,01 H								Ator (mol	nmasse in u lare Masse)			ш	IV	v	VI	VII	4,00 He
-(6,94 Li 3	9,01 Be 4		rac Erd	asserstoff lioaktiv lalkalimetalle	,	Halbmeta Edelgase Nichtmet	alle e alle		26,98 AI 13	- Elementsy	mbol	10,81 B 5	12,01 C 6	14,01 N 7	16,00 O 8	19,00 F 9	20,18 Ne 10
	22,95 Na 11	24,31 Mg 12	III a	IV a	V a	VIa	Alkalime VII a	talle	ord VIII a	I nungszahl	la	Ша	26,98 Al 13	28,09 Si 14	30,97 P 15	32,06 S 16	35,45 CI 17	^{39,95} Ar ¹⁸
	39,10 K 19	40,08 Ca 20	44,96 Sc 21	47,87 Ti 22	50,94 V 23	52,00 Cr 24	54,94 Mn 25	55,85 Fe 26	58,93 CO 27	58,69 Ni 28	63,55 Cu 29	65,39 Zn 30	69,72 Ga 31	72,61 Ge 32	74,92 As 33	78,96 Se 34	79,90 Br 35	83,8 Kr 36
	85,47 Rb 37	87,62 Sr 38	88,91 Y 39	91,22 Zr 40	92,91 Nb 41	95,94 Mo 42	97,91 Tc 43	101,0 Ru 44	102,9 Rh 45	^{106,4} Pd ⁴⁶	107,9 Ag 47	112,4 Cd 48	114,8 In 49	118,7 Sn 50	121,8 Sb 51	127,6 Te 52	126,9 53	131,3 Xe 54
	132,9 CS 55	137,3 Ba 56	175,0 Lu 71	178,5 Hf 72	180,9 Ta 73	183,8 W 74	186,2 Re 75	190,2 OS 76	192,2 Ir 77	195,1 Pt 78	197,0 Au ⁷⁹	200,6 Hg 80	204,4 TI 81	207,2 Pb 82	209,0 Bi 83	209,0 Po 84	210,0 At 85	222,0 Rn 86
	223,0 Fr 87	226,0 Ra 88	262,0 Lr 103	261,1 Rf 104	262,1 Db 105	266,1 Sg 106	264,1 Bh 107	269,1 HS 108	268,1 Mt 109	273,1 DS 110	272,1 Rg 111							

- lightest metal on Earth (lightest from all solid element)
- highest electrochemical potential
- highest specific energy is achievable

However very reactive!!!

Reaction between lithium and water

Quelle: http://www.dlt.ncssm.edu

Working in glovebox

http://www.ifam.fraunhofer.de/en/Bremen/Shaping_Functional_Materials/Equipment.html

© Hydro-Québec, 1996-2015. All rights reserved.

Working in dry room: RH% <0,3

Range of application of lithium

Production of lithium

- 70% from salt water (brine) (residual from rocks)
- 750 t brine \rightarrow ~1 t Li (in 24 month procedure)

"The lithium triangle" - Chile, Bolivia, Argentina

<u>2nd largest salt flat on Earth</u> and <u>World-wide largest</u> lithium deposit, i.e., about 25% of the Earth's resources (!)

Rockwood Lithium, Antofagasta, Atacama Wüste, Chile

Rockwood Lithium Plant, Antofagasta, Atacama Wüste, Chile

Rockwood Lithium, Antofagasta, Atacama Wüste, Chile Bildnachweis: http://blogs.reuters.com/photographers-blog/2013/04/05/the-lithium-triangle/

Primary lithium batteries

Classification of the primary lithium systems

Primary lithium batteries with liquid cathode

Lithium-Schwefeldioxid-Zelle, Li/SO₂

Anode: Lithium Metall

Kathode: SO₂ / hochporöser Kohlenstoff

Elektrolyt: SO₂/Acetonitril/LiBr

Ruhespannung: 3,0 V

ca. 260 Wh/kg, 415 Wh/l

Hochstrom/Niedrig-temperatur Anwendungen Zelle unter Druck: 3-4 Bar Temperaturbereich: -40 - +55°C

Reaktion (Gesamt):

$2 \text{ Li} + 2 \text{ SO}_2 \rightarrow \text{Li}_2\text{S}_2\text{O}_4 \text{ (Lithium Dithionit)}$

Meistens "kathodenlimitiertes" Entladeprozess

Primary lithium batteries with liquid cathode

Lithium-Thionylchlorid-Zelle, Li/SOCl₂

Anode: Lithium Metall

Kathode: SOCl₂ / hochporöser Kohlenstoff

```
Elektrolyt: SOCl<sub>2</sub>/LiAlCl<sub>4</sub> (LiGaCl<sub>4</sub>)
```

Ruhespannung: 3,6 V

Baugrößen: 400 mAh \rightarrow 10 000 Ah (!)

Reaktion (Gesamt):

$$4 \text{ Li} + 2 \text{ SOCl}_2 \rightarrow 4 \text{ LiCl} + \text{S} + \text{SO}_2$$

Primary lithium batteries with liquid cathode

Summe: $2 Li + SO_2Cl_2 \rightarrow 2 LiCl + SO_2$

Lithium-Eisensulfide-Zelle, Li/FeS₂

Anode: Lithium Metall

Kathode: FeS₂

Elektrolyt: Lil/Solvent

Ruhespannung: 1,80 V

Nennspannung: 1,50 V

MÚEGYETEM 1782 robert.kun@mail.bme.hu

Temperaturbereich: -40 - +60°C

Reaktionen

Anode: 4 Li \rightarrow 4 Li⁺ + 4e⁻

Kathode: $FeS_2 + 4e^- \rightarrow Fe + 2S^{2-}$

Summe: 4
$$\text{Li} + \text{FeS}_2 \rightarrow \text{Fe} + 2 \text{Li}_2^{1}$$

Budapest University of Technology and Economics

Faculty of Chemical Technology and Biotechnology

Pyrit

Gute Hochstrom/Niedrig-temperatur Leistungsfähigkeit

Lithium-Manganoxid-Zelle, Li/MnO₂

Anode: Lithium Metall

Kathode: MnO₂

Elektrolyt: LiClO₄ in PC/1,2-Dimethoxyethane

Nennspannung: 3,0 V (cut-off: 2 V)

Ruhespannung: 3,3 V

Temperaturbereich: -20 - +55°C

Spezifische Energie: 230 Wh/kg

Energiedichte: 530 Wh/l

Reaktionen

Anode: x Li \rightarrow x Li⁺ + x e⁻

+ Kein "voltage delay"

+ Gute Lagerfähigkeit (Selbstentladung <1%/Jahr) Kathode: $MnO_2 + x Li^+ + x e^- \rightarrow Li_x MnO_2$

Summe: x $L^{0}i + MnO_2 \rightarrow L^{1}i_x MnO_2$

(Interkalation)

Lithium-Manganoxid-Zelle, Li/MnO₂

Budapest University of Technology and Economics Faculty of Chemical Technology and Biotechnology

M Ú E G Y E T E M 1 7 8 2 M Ú E G Y E T E M 1 7 8 2

Lithium-Kohlenstoff-Monofluorid-Zelle, Li/(CF), Anode: Lithium Metall **Kathode**: Poly-Kohlenstoff Monofluorid (CF), **Elektrolyt**: LiBF₄/LiClO₄ in PC/Dimethoxyethane Nennspannung: 2,5 - 2,7 V **Ruhespannung**: 3,2 V Lagerfähigkeit: 10+ Jahre **Spezifische Energie**: 250 Wh/kg (590 Wh/kg, Großformat) Energiedichte: 635 Wh/l (1050 Wh/l, Großformat) Reaktionen Anode: x Li \rightarrow x Li⁺ + x e⁻ Kathode: $(CF)_x + x e^- \rightarrow x C + x F^-$

Summe: $x \stackrel{0}{\text{Li}} + (\stackrel{-1}{\text{CF}})_x \rightarrow x \stackrel{+1}{\text{LiF}} + x \stackrel{0}{\text{C}}$

Faculty of Chemical Technology and Biotechnology

ETEM 1782 robert.kun@mail.bme.hu

Nomenclature of the primary lithium batteries

Secondary Li-ion Systems

A "Ragone-plot"

The "Rocking Chair Principle"

(Sum: $C_6Li + 2 Li_{0,5}CoO_2 \rightarrow 2 LiCoO_2 + C_6$)

Dimensionality of the Li-ion transport in solids

Olivine-structure - 1D

LiFePO₄ - Lithium-iron(II)-phosphate (LFP)

- environmental friendly
- cheap
- high theoretical capacity
- high stability/high safety
- ,overcharge-resistant

very poor electronic and ionic conductivity

<u>Structure</u>

- Olivine-structure
- FeO₆ octahedrons
- PO₄ tetrahedrons

Olivine-structure - 1D

LiFePO₄ - Lithium-iron(II)-phosphate - summary

Lithium Iron Phosphate: LiFePO4, Graphite anode, Since 1996 Short form: LFP or Li-phosphate					
Voltage, nominal	3.20V, 3.20V				
Specific energy (capacity)	90–120Wh/kg				
Charge (C-rate)	1C typical; 3.65V peak; 3h charge time				
Discharge (C-rate)	25-30C continuous, 2V cut-off (lower that 2V causes damage)				
Cycle life	1000-2000 (related to depth of discharge, temperature)				
Thermal runaway	270°C (518°F) Very safe battery even if fully charged				
Applications	Portable and stationary needing high load currents and endurance				
Comments	Very flat voltage discharge curve but low capacity. One of safest Li-Ions. Elevated self-discharge				

LiCoO₂ - Lithium-cobalt(III)-oxide (LCO)

B.C. Melot, L.-M. Tarascon, Acc. Chem. Res., 2012, 46, 1227

 \checkmark

LiCoO₂ - Lithium-cobalt(III)-oxide

very high theoretical capacity (ca. 274 mAh/g)

- high energy density material
 - lightweight material

- High toxicity caused by cobalt
- Non-environmental friendly, harmful
- small reversible capacity (130 mAh/g)
- ☑ high costs (see price of cobalt)

LiCoO₂ - Lithium-cobalt(III)-oxide - summary

Lithium Cobalt Oxide: LiCoO ₂ (~60% Co). Graphite anode, Since 1991 Short form: LCO or Li-cobalt.					
Voltage, nominal	3.60V				
Specific energy (capacity)	150–250Wh/kg				
Charge (C-rate)	0.8C, 1C maximum, 4.20V peak (most cells); 3h charge typical				
Discharge (C-rate)	1C; 2.50V cut off				
Cycle life	500-1000, related to depth of discharge, load, temperature				
Thermal runaway	150°C (302°F). Full charge promotes thermal runaway				
Applications	Mobile phones, tablets, laptops, cameras				
Comments	Very high specific energy, limited specific power. Cobalt is expensive. Serves as Energy Cell.				

LiNiO₂ - Lithium-nickel(III)-oxide (LNO)

<u>Structure</u>

- o similar to LiCoO₂
- \circ Ccp der O²⁻
- edge-sharing NiO₆-octahedrons
- Li-ions intercalate between the layers

http://www.fvee.de/fileadmin/publikationen/Workshopbaende/ws2010-1/ws2010-1_07_WohlfahrtMehrens.pdf

LiNiO₂ - Lithium-nickel(III)-oxide

- less toxic compared to LiCoO₂
- cheaper than LiCoO₂
- higher reversible capacity, > 150 mAh/g
- high energy density

- difficult preparation process (i.e., Ni³⁺)
- poor chemical stability
- higher safety risk

LiNiO₂ - Lithium-nickel(III)-oxide <u>The source of the poor chemical stability</u>

LiNiO₂ is stable in air and also at higher temperatures

$$\mathsf{LiNiO}_2 \rightarrow \mathsf{stable}$$

Problems in use in the battery cell

on charging process:

• deintercalation of Li⁺-ions \rightarrow Li_{1-x}NiO₂

```
X \le 1 \rightarrow \text{oxidation number changes } (+3) \rightarrow +4)
Li_{1-x}NiO_{2}
```

• Ni⁴⁺ is non-stable \rightarrow strong oxidation agent

LiNiO₂ - Lithium-nickel(III)-oxide

The result: internal redox reaction occurs!

Ni⁴⁺ oxidizing O²⁻ ions \rightarrow release of oxygen gas

 $2 \operatorname{Ni}^{4+} + 2 e^{-} \rightarrow 2 \operatorname{Ni}^{3+} (\text{Reduction})$

 $2 O^{2-} \rightarrow O_2 + 2 e^-$ (**Oxi**dation)

Strong exothermic reaction!

Budapest University of Technology and Economics

Faculty of Chemical Technology and Biotechnology

ETEM 1782 robert.kun@mail.bme.hu

LiNi_{0.8}Co_{0.15}Al_{0.05}O₂ - Lithium-nickel-cobalt-aluminium-oxide (NCA)

Lithium Nickel Cobalt Aluminum Oxide: LiNiCoAlO2 (~9% Co) Graphite anode Since 1999 Short form: NCA or Li-aluminum. Voltage, nominal 3.60V Specific energy 200-250Wh/kg (capacity) 0.5C standard; 4.20V peak (most cells), 3h charge typical Charge (C-rate) 1C continuous; 3.00V cut-off Discharge (C-rate) Cycle life 500 (related to depth of discharge, temperature) 150°C (302°F) typical, High charge promotes thermal Thermal runaway runaway Applications Medical devices, industrial, electric powertrain (Tesla) Shares similarities with Li-cobalt. Serves as Energy Cell. Comments

LiNi_{0.33}Mn_{0.33}Co_{0.33}O₂ - Lithium-nickel-manganese-cobalt-oxide (NMC)

Lithium Nickel Manganese Cobalt Oxide: LiNiMnCoO₂. Graphite anode Since 2008 Short form: NMC (NCM, CMN, CNM, MNC, MCN are similar with different medal combination)

Voltage, nominal	3.60V, 3.70V
Specific energy (capacity)	150-220Wh/kg
Charge (C-rate)	0.7C, 4.20V peak; 3h charge time
Discharge (C-rate)	2C continuous; 2.50V cut-off
Cycle life	1000-2000 (related to depth of discharge, temperature)
Thermal runaway	210°C (410°F) typical. High charge promotes thermal runaway
Applications	E-bikes, medical devices, EVs, industrial
Comments	Provides high capacity and high power. Serves as Hybrid Cell. This chemistry is often used to enhance Li- manganese.

Spinel structure - 3D

LiMn₂O₄ - Lithium-manganese(III/IV) oxide (LMO)

Spinel structure - 3D

LiMn₂O₄ - Lithium-manganese-oxide

- less toxic
- higher thermal stability
- ✓ cost-efficient
- Mn is a frequent element (0,95%)

smaller reversible capacity (120 mAh/g)

poor chemical stability

LiMn₂O₄ - Lithium-manganese-oxide

Problem: poor chemical stability

• $Li_xMn_2O_4$

• changing the oxidation state of Mn by variation of x

x	Compound	Oxidation number of manganese ions
1	Li ₁ Mn ₂ O ₄	+3,5
2	Li ₂ Mn ₂ O ₄	+3
0	Li ₀ Mn ₂ O ₄	+4

Disproportionation von Mn⁺³

Spinel structure - 3D

Spinel structure - 3D

LiMn₂O₄ - Lithium-manganese-oxide - summary

Lithium Manganese Oxide: LiMn ₂ O ₄ , Graphite anode, Since 1996 Short form: LMO or Li-manganese (spinel structure)					
Voltage, nominal	3.70V (some may be rated 3.80V)				
Specific energy (capacity)	100–150Wh/kg				
Charge (C-rate)	0.7-1C recommended, 3C maximum; 4.20V peak (most cells)				
Discharge (C-rate)	10C continuous, 30C for 5s pulse, 2.50V cut-off				
Cycle life	500-1000 (related to depth of discharge, temperature)				
Thermal runaway	250°C (482°F) typical. High charge promotes thermal runaway				
Applications	Power tools, medical devices, electric powertrains				
Comments	High power but less capacity; safer than Li-cobalt; commonly mixed with NMC to improve performance.				

Material	Spannung	Spezifische Kapazität	Spezifische Energie
LiCoO ₂	3,7 V	140 mAh/g	0,518 kWh/kg
LiNiO ₂	3,5 V	180 mAh/g	0,630 kWh/kg
LiCo _{1/3} Ni _{1/3} Mn _{1/3} O ₂	3,6 V	160 mAh/g	0,576 kWh/kg
Li(Li _a Ni _x Mn _y Co _z)O ₂	4,2 V	220 mAh/g	0,920 kWh/kg
LiMn ₂ O ₄	4,0 V	100 mAh/g	0,400 kWh/kg
LiFePO ₄	3,3 V	150 mAh/g	0,495 kWh/kg
Li ₂ FePO ₄ F	3,6 V	115 mAh/g	0,414 kWh/kg

Different performance, costs and environmental impact

Unterschiedliche Potentiallagen

Einige Materialien für die positive LIB-Elektrode

Construction of Li-ion batteries

Construction of the Li-ion batteries (proportions)

Components of a Li-ion battery

Weight distribution of the elementary components of a Li-ion battery cell

Based on a 500€/kWh high energy pack

Cost distribution of a 22 kWh Li-ion battery pack used in a mid-size full-EV (2012)

\$500-800/kWh - Pack \$300-400/kWh - Zelle

Quelle: Element Energy, 2012

MÚEGYETEM 1782 robert.kun@mail.bme.hu

Тур 18650

z.B. 3S3P; 9 x 3,6V @ 2400mAh Zelle = 10,8V @ 00 mAh

Тур 18650

Tesla Model S Batterie: >7000 individuelle 18650 Zellen in 16 Modulen. 85 kWh (400V DC)

Button cell (primary cell)

Bezeichnung	Durchmesser (mm)	Höhe (mm)	Spannung (V)	Kapazität (mAh)
CR2016	20	1,6	3	90
CR2025	20	2,5	3	150
CR2025	20	2,5	3	165
CR2032	20	3,2	3	210

	Lead acid (VRLA)	NiCd	NiMH	Li-Ion
Nominal cell voltage (V)	2,0	1,2	1,2	3,7
Specific energy(Wh/kg)	35	50	90	165
Energy density (Wh/I)	80	170	330	330
cost/kWh	50	200	200	300-500
Cycle life performance	200	600-1000	300-500	500

